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The stability of electrohydrodynamic flow between two horizontal plates with a
vertical electrical conductivity gradient has been investigated in the presence of an
imposed weak shear flow. The weak shear flow is driven by the horizontal pressure
gradient, and the electrical conductivity gradient is generated by the concentration
variation of the charge-carrying solute. An external electric field is applied across the
fluid layer, and then the interaction between the unstable stratification of electro-
hydrodynamic flow and the shear arising from the plane Poiseuille flow is studied. A
linear stability analysis has been implemented by considering both the longitudinal
and transverse modes. Unlike the thermally stratified plane Poiseuille flow in which the
longitudinal mode always dominates the onset of instability and is virtually unaffected
by the superimposed shear flow, the instability of this mixed electrohydrodynamic–
Poiseuille flow system is found to depend heavily on the shear flow, and the transverse
mode may prevail over the longitudinal mode when the momentum of shear flow is
sufficiently small. Particularly, an oscillatory longitudinal mode is found to exist,
and it may become the critical mode when the conductivity gradient is small
enough. The present results verify that an imposed weak shear flow may enhance the
electrohydrodynamic instability in a fluid layer with electrical conductivity gradient.

1. Introduction
Electrohydrodynamic instability occurs in liquids with spatial gradients in the

electrical properties. This subject has received much attention recently due to its widely
promising applications in microfluidic devices (Storey 2005). In classical studies, these
instability flows were discussed in systems either with abrupt changes in electrical
properties (Taylor & McEwan 1965; Melcher & Taylor 1969; Michael & O’Neill 1970)
or with spatial variations in electrical properties (Melcher & Firebaugh 1967; Turnbull
& Melcher 1969; Hoburg & Melcher 1976; Hoburg & Melcher 1977; Hoburg 1977).
The former is related to this study in comparable flow structure with an external
applied electric field across the fluid layer, and the latter is similar in spatial gradient
in electrical conductivity. Hence, here we will briefly introduce these studies.

Taylor & McEwan (1965) first considered the stability of the horizontal interface
between conducting and non-conducting fluids under an applied uniform vertical
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electric field. They found the interface becomes unstable and performed some
experiments to verify their theoretical conclusions. Michael & O’Neill (1970) studied
the stability of a layer of non-conducting fluid lying between two semi-infinite
conducting fluids for both inviscid and viscous fluid models. Their results show
that the criteria for instability are the same for both inviscid and viscous fluid cases.
A detailed review for flows driven by interfacial electric stresses was given by Melcher
& Taylor (1969). Recently, Thaokar & Kumaran (2005) investigated the stability
of the interface between two dielectric fluids confined between parallel plates with
a vertical electric field. They considered both perfect dielectric and leaky dielectric
models and found that the interface becomes unstable when the applied potential
exceeds a certain critical value which depends on the electrical properties of the fluids.
Li et al. (2007) further analysed a problem similar to that of Thaokar & Kumaran
(2005) but with the interface possessing surface charges and the existence of an
electrical tangential shear stress there. They found the applied electric field always
has a destabilizing effect for perfect dielectric model, but for the leaky dielectric model
it may produce a destabilizing or stabilizing effect which also depends on the electrical
properties of the two fluids.

For the electrohydrodynamic flows with spatial variations in electrical properties,
Melcher & Firebaugh (1967) considered the case in which a slightly conducting liquid
imposes a temperature gradient and a wave of electric field travels perpendicular to
the temperature gradient. In this case, the temperature gradient results in a gradient
in electrical conductivity, and they found the interaction between the conductivity
gradient and the imposed electric field can pump the liquid. Turnbull & Melcher
(1969) proposed a stability criterion for a perfectly insulating fluid with thermally
induced gradients in density, permittivity and viscosity. They successfully performed
an experiment to verify their theoretical criterion. Hoburg & Melcher (1976) studied
the instability on the interface between two miscible fluids stressed by an equilibrium
tangential electric field and with disparate electrical conductivities. They simulated
the configuration by using a layer of exponentially varying conductivity and observed
large-scale mixing of the fluids at relatively high electric fields. They further derived
a bulk-coupled model to describe the linear instability mechanisms underlying
the electrohydrodynamic mixing process associated with a diffusive conductivity
gradient stressed by an orthogonal electric field (Hoburg & Melcher 1977). A related
experimental and theoretical study has also been performed by Hoburg (1977). In
contrast to the result of these studies that the electrical conductivity gradient is
primarily induced by the thermal effect, Baygents & Baldessari (1998) considered the
onset of electrohydrodynamic instability across a thin fluid layer with an electrical
conductivity gradient which is associated with the concentration gradient of the
charge-carrying solutes. They found the diffusion of conductivity is an important
factor that results in a conditionally stable system. As they have discussed, such an
electrohydrodynamic instability problem is of interest for electrically driven convection
observed in spaceflight experiments on isoelectric focusing which is a separation
process used to isolate and purify biological materials.

Based on the contributions of these studies, a subfield of electrohydrodynamics,
named electrokinetics, has been extensively studied recently (Lin et al. 2004; Tardu
2004; Oddy & Santiago 2005; Chen et al. 2005; Storey 2005; Storey et al. 2005) due to
its crucial applications in micro total analysis systems. The instability of electrokinetic
flow involves the coupling of electrohydrodynamic and electro-osmotic flows. In
particular, the models of electrohydrodynamic flow in these studies are basically
developed from the model proposed by Baygents & Baldessari (1998). Although



Electrohydrodynamic instability in a fluid layer 193

z = d

z

σ = σ (z)v–(z)
E
– 

= E
–
(z)

z = 0
x

p

Δ

Figure 1. The system configuration.

electro-osmosis is usually used in microfluidic systems to manipulate the liquid flows,
the fluid within microchannels also can be driven by an imposed pressure gradient
(Stone, Stroock & Ajdari 2004). Accordingly, here we will consider the instability of
electrohydrodynamic flow in a thin fluid layer coupled with a superimposed weak
shear flow induced by a pressure gradient along the channel. The present theoretical
model is primarily developed from the work of Baygents & Baldessari (1998), in
which the electrical conductivity gradient varies linearly across the fluid layer and the
diffusive processes of ionic solutes are taken into consideration. Furthermore, due to
the presence of horizontal shear flow, the instability waves may align parallel with
or vertical to the direction of shear flow. Therefore, both longitudinal and transverse
modes will be investigated in this study. The results will benefit the further understand-
ing of instability mechanisms for electrohydrodynamic flows in microfluidic systems.

2. Formulation of the problem
Consider the electrohydrodynamic motion in a layer of liquid occupying z ∈ (0, d)

between two parallel plates with a linear electrical conductivity gradient across the
layer as shown in figure 1. A weak shear flow driven by the horizontal pressure
gradient is superimposed on the fluid layer. The continuity and momentum equations
can be expressed by

∇ · v = 0, (1)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ρf E − 1

2
(E · E) ∇ε + μ∇2v, (2)

where v is the fluid velocity, ρ the density, p the pressure, ρf the free charge density,
E the applied electrical field, ε the dielectric constant and μ the dynamic viscosity.
The second term on the right-hand side of (2) is the electrical body force induced by
the action of the electric field on the free charge density in solution. The third term
accounts for the electric force caused by the gradient of the dielectric constant, which
is generally small and could be ignored. The free charge density ρf and the electrical
field E are coupled by the Gauss’ law,

∇ · (εE) = ρf . (3)

Moreover, the electrical current density J for ohmic conductors is given by

J = σ E + ρf v, (4)

where σ is the electrical conductivity, and the conservation of charge yields

∂ρf

∂t
+ ∇ · (σ E + ρf v) = 0. (5)
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Since the fluid layer is an ionic conductor, the conductivity varies with the local
ion concentration. Accordingly, it has been shown by Melcher (1973) that the fluid
conductivity could be described by

Dσ

Dt
= Keff ∇2σ, (6)

where Keff is the effective diffusivity of the ions due to Brownian motion. It is noted
that (6) holds if the local charge accumulations relax rapidly in comparison with the
viscous relaxation time and the time for ion electromigration (Baygents & Baldessari
1998).

Many experimental and theoretical studies have shown that a conductivity gradient
may develop along the superimposed electric field in a thin fluid layer (Thormann,
Mosher & Bier 1986; Mosher, Saville & Thormann 1992, pp. 163–230; Baygents &
Baldessari 1998). As shown in figure 1, the conductivity varies linearly across the fluid
layer, and thus it can be described by

σ (z) = σ0 +
�σ

d
z, (7)

where �σ = σd − σ0, σ0 and σd are respectively the electrical conductivity at z = 0
and z = d . Assume the superimposed horizontally weak shear flow will not disturb
the steady conductivity profile between the parallel plates. As a result, we can derive
the basic-state solution for this system as follows:

E(z) =
E0k

1 + (�σ/σ0)(z/d)
, (8)

ρf (z) = −ε
�σ/σ0

[1 + (�σ/σ0)(z/d)]2
E0

d
, (9)

v(z) =
d2

2μ

∂p

∂x

(
z2

d2
− z

d

)
i, (10)

where E0 is the electric-field strength at the bottom plate z = 0 and i and k are
the unit vectors respectively in x- and z-direction. This solution indicates a constant
current density flows through the fluid layer. To non-dimensionalize the governing
equations, the following scales are used: length ∼d , velocity ∼v0, time ∼d/v0, pressure
∼ρv2

0, conductivity ∼�σ , electric field E0 and free charge density ∼εE0�σ/dσ0. Here
v0 is the maximum velocity on the velocity profile defined by (10) and satisfying
v0 = −(∂p/∂x)(d2/8μ). Accordingly, the dimensionless forms of governing equations
(1), (2), (5) and (6) can be expressed as follows:

∇ · v = 0, (11)

Dv

Dt
= −∇p + Q′(∇2φ)∇φ +

1

Re
∇2v, (12)

D

Dt
(∇2φ) = − τ

Re

{[
1 +

�σ

σ0

σ

]
∇2φ +

�σ

σ0

∇σ · ∇φ

}
, (13)

Dσ

Dt
=

1

SceRe
∇2σ. (14)

Here we have used the dimensionless electric potential φ to describe both the electric
field and free charge density in the forms

E = −∇φ, (15)
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ρf = − σ0

�σ
∇2φ. (16)

In (12)–(14), the parameters Q′, Re, τ and Sce are defined as

Q′ =
εE2

0

ρv2
0

, Re =
v0d

ν
, τ =

d2σ0

νε
, Sce =

ν

Keff

, (17a–d)

where Q′ represents the ratio of electrical and inertia forces; Re is the Reynolds
number; τ represents the ratio of the viscous relaxation time to the charge relaxation
time; Sce is the electric Schmidt number; and ν is the kinematic viscosity defined
by ν = μ/ρ. The parameters Q′, Re and Sce are related by Q′ = Q

/
(SceRe2),

in which Q = εE2
0d

2
/
μKeff represents the dimensionless electric-field strength or

the scaled electric-energy density. The dimensionless forms of basic-state solution
become

σ (z) = z, (18)

E(z) =
1

1 + (�σ/σ0)z
k, (19)

ρf (z) = − 1

[1 + (�σ/σ0)z]2
, (20)

v(z) = 4(z − z2)i, (21)

and accordingly the dimensionless electric potential φ can be derived as

φ̄(z) = φ0 − σ0

�σ
ln

(
1 +

�σ

σ0

z

)
, (22)

where φ0 is the electric potential at z = 0. To perform a linear stability analysis for
this flow, we superimposed a small disturbance on the basic-state solution as

σ (x, t) = σ (z) + σ ′(x, t), (23)

with similar expressions for the other variables. Here the prime denotes the small
perturbation variable. Following the usual procedures, we can obtain the small
perturbation equations below:

∇ · v′ = 0, (24)

∂v′

∂t
+ v

∂v′

∂x
+ w′ dv

dz
i = −∇p′ +

1

Re
(∇2v′) +

Q

SceRe2

(
d2φ

dz2
∇φ′ + ∇2φ′ dφ

dz
k

)
, (25)

∂

∂t

(
∇2φ′) + v

(
∇2 ∂φ′

∂x

)
+ w′ d

3φ

dz3

= − τ

Re

{(
1 +

�σ

σ0

σ

)
∇2φ′ +

�σ

σ0

[
σ ′ d

2φ

dz2
+

dφ

dz

∂σ ′

∂z
+

∂φ′

∂z

dσ

dz

]}
, (26)

∂σ ′

∂t
+ v

∂σ ′

∂x
+ w′ dσ

dz
=

1

SceRe
∇2σ ′. (27)

In order to eliminate the pressure term in (25), we take the double curl of this
equation, and the z -component of the resulting equation yields
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−∇2 ∂w′

∂t
− v̄∇2 ∂w′

∂x
+

d2v

dz2

∂w′

∂x

=
1

Re
[−∇2(∇2w′)] +

Q

SceRe2

[
d3φ̄

dz3
(∇2

1φ
′) − dφ̄

dz
(∇2∇2

1φ
′)

]
, (28)

where ∇1 is the operator defined as ∇1 = ∂2
/
∂x2 + ∂2

/
∂y2. Normal modes are then

employed to decompose the disturbances in the form⎧⎨
⎩

w′(x, t)
φ′(x, t)
σ ′(x, t)

⎫⎬
⎭ =

⎧⎨
⎩

ŵ(z)

φ̂(z)
σ̂ (z)

⎫⎬
⎭ f (x, y)est , (29)

where f (x, y) = exp[i(αxx + αyy)] with α2 = α2
x + α2

y . As a result, the governing
equations can be written as

(s + 4iαx(z − z2) − 1

Re
(D2 − α2))(D2 − α2)ŵ + 8iαxŵ = − 2α2Q

SceRe2

(
�σ

σ0

)2

× 1

[1 + (�σ/σ0)z]3
φ̂ +

α2Q

SceRe2

1

1 + (�σ/σ0)z
(D2 − α2)φ̂, (30)

(
s +

τ

Re

(
1 +

�σ

σ0

z

)
+ 4iαx(z − z2)

)
(D2 − α2)φ̂ +

τ

Re

�σ

σ0

Dφ̂ − 2

(
�σ

σ0

)2

× 1

[1 + (�σ/σ0)z]3
ŵ = − τ

Re

�σ

σ0

{
�σ

σ0

1

[1 + (�σ/σ0) z]2
σ̂ − 1

1 +
(
�σ/σ0

)
z
Dσ̂

}
,

(31)(
s − 1

SceRe
(D2 − α2) + 4iαx(z − z2)

)
σ̂ = −ŵ, (32)

where D = d/dz, αx = α cos φk and φk = cos−1
(
αx/α

)
which is the angle between

the wave propagation direction and the shear flow direction. The case of φk = 0
indicates the axis of electrohydrodynamic convection roll is normal to the shear
flow direction, which is called the transverse mode. On the other hand, the case of
φk = π/2 indicates the axis of convection roll is parallel to the shear flow direction,
which is named the longitudinal mode. Note that the parameter τ for a thin fluid layer
with charge-carrying solutes is generally quite large with the order of 107(Baygents
& Baldessari 1998). Therefore, it is reasonable to assume τ → ∞, and then (31)
becomes{(

1 +
�σ

σ0

z

)
(D2 − α2) +

�σ

σ0

D

}
φ̂

+

{(
�σ

σ0

)2
1

[1 + (�σ/σ0)z]2
−

(
�σ

σ0

)
1

1 + (�σ/σ0)z
D

}
σ̂ = 0. (33)

The set of equations (30), (32) and (33) is solved together with rigid boundary
conditions at z = 0 and z = 1 as follows:

dφ̂

dz
= ŵ = σ̂ =

dŵ

dz
= 0. (34)
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Here we assume the conductivity and the normal components of electric field and the
velocity are fixed on the top and bottom rigid plates. Accordingly, a set of eighth-order
eigenvalue problem is determined, which takes the form

F (s, α, Q, Re, Sce, �σ/σ0, φk) = 0. (35)

This eigenvalue problem is solved by Chebyshev collocation method using Chebyshev
polynomials as the set of basis functions. In general, 50 terms of the polynomials
are sufficient to provide adequate resolution with economic consumption of
computational cost. The linear instability boundary is indicated by the neutral curves
on the plane of Q versus α. That is for given values of the other parameters, the
neutral curves on the Q–α plane are used to determine the critical value of Q, Qc,
which represents the critical magnitude of the applied electric field needed to induce
the electrically driven convection.

3. Results and discussion
This section is organized into three parts in order to provide full understanding

of the stability characteristics for this problem. First, the electrohydrodynamic
instability in a thin fluid layer without the imposed shear flow that had been
studied by Baygents & Baldessari (1998) will be re-examined. Here we will focus
on the instability behaviours under conditions with low electrical conductivity
gradient and explore the possible existence of an oscillatory mode. Subsequently,
the present electrohydrodynamic instability problem with the imposed weak shear
flow between two rigid plates will be investigated, and the instability characteristics
of the longitudinal and transverse modes will be discussed in details.

3.1. Stability characteristics without the superimposed shear flow

Baygents & Baldessari (1998) in their study simply assumed the exchange of stabilities
holds to investigate the electrohydrodynamic instability behaviours in a thin fluid layer
with an electrical conductivity gradient. Both stress-free and rigid boundary conditions
are considered in their numerical results. Although their theoretical model can
successfully characterize the electrically driven convection in an initially quiescent fluid
layer, they also found that the numerical scheme will lose the accuracy requirements,
since the loop of neutral curve will rise and recede rapidly to the small wavenumber
region, as the electrical conductivity gradient is less than a certain critical value,
for example 4.01, for the case of stress-free boundaries. Accordingly, they suggested
that the fluid layer is only sensitive to long-wavelength disturbances and that the
lateral boundaries will exert a substantial stabilizing influence when the electrical
conductivity gradient is small. However, a fluid layer of infinite extent is assumed
without lateral boundaries in their model. Such a conclusion is indeed questionable.
From the physical point of view, it is also suspicious that the fluid layer will always be
stable even though the strength of applied electric field approaches infinity. Therefore,
in this study we take the overstability into consideration and perform a more complete
linear stability analysis to examine the possible existence of an oscillatory mode in
this electrically driven convection system.

To accomplish the analysis, the dimensionless governing equations are derived
by employing the same scales as those adopted by Baygents & Baldessari (1998):

length ∼d , velocity ∼
√

εE2
0�σ/ρσ0, time ∼

√
d2ρσ0

/
εE2

0�σ , pressure ∼εE2
0�σ/σ0,

conductivity ∼�σ , electric field ∼E0 and free charge density ∼εE0�σ/dσ0. Note that
the scales of velocity, time and pressure are different from those used in the present
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study with an imposed weak shear flow. Since a quiescent basic state is assumed in
Baygents & Baldessari (1998), the velocity scale is given by the balance of inertia
and electrical forces, and accordingly the time and pressure scales are determined.
Moreover, the basic-state solution of velocity is zero which is also different from the
present case given by (21). Following the similar procedures of Baygents & Baldessari
(1998) while holding the growth rate constant in the resultant of linear stability
equations, we have

2(�σ/σ0)
1/2

τ

(
Q

Sce

)1/2
(�σ/σ0)

2

[1 + (�σ/σ0)z]3
ŵ +

�σ/σ0

[1 + (�σ/σ0)z]
Dσ̂ − (�σ/σ0)

2

[1 + (�σ/σ0)z]2
σ̂

−
(

1 +
�σ

σ0

z

)
(D2 − α2)φ̂ − �σ

σ0

Dφ̂ = s
(�σ/σ0)

1/2

τ

(
Q

Sce

)1/2

(D2 − α2)φ̂, (36)

(D2 − α2)σ̂ −
(

�σ

σ0

)1/2

(QSce)
1/2 ŵ = s

(
�σ

σ0

)1/2

(QSce)
1/2 σ̂ , (37)

α2

(�σ/σ0)[1 + (�σ/σ0)z]
(D2 − α2)φ̂ − 2α2(�σ/σ0)

[1 + (�σ/σ0)z]3
φ̂

+

(
�σ

σ0

)−1/2 (
Q

Sce

)−1/2

(D2 − α2)2ŵ = s(D2 − α2)ŵ, (38)

The above set of equations (36)–(38) is then solved together with stress-free boundary
conditions at z = 0 and z = 1,

dφ̂

dz
= ŵ = σ̂ =

d2ŵ

dz2
= 0, (39)

or with the same rigid boundary conditions as (34).
The numerical results are first compared with those of Baygents & Baldessari

(1998) for the stationary mode. It is found that the present study can reproduce their
results exactly. For example, as seen in figures 2(d ) and 3(d ), the lower branch of
the stationary mode indicated by the solid curve is the same as the corresponding
curve in Baygents & Baldessani (1998). In figure 4(a) the solid curve for the case
with stress-free boundaries is also identical to the curve in figure 11 in their study. In
the following paragraphs, we will elucidate the existence of the oscillatory mode in
cases with either stress-free or rigid boundary conditions by showing the variations
of neural curves to provide a thorough understanding of the instability characteristics
of this electrohydrodynamic flow system.

The neutral curves for the case with stress-free boundaries are shown in figures
2(a)–2(d ) for four typical conductivity gradients with Sce = 103. As demonstrated in
figure 2(a), the neutral curve of the oscillatory mode is found to exist and dominate the
onset of instability when the conductivity gradient is small enough. The corresponding
magnitude of the oscillatory frequency |si | is also shown in the figure. As we have
discussed, in the study of Baygents & Baldessari (1998) they failed to find the linear
instability boundary when the conductivity gradient is less than 4.01 in the case of
stress-free boundaries. The present results show that their assumption regarding the
applicability of exchange of stabilities is incorrect. Actually, the oscillatory mode
plays an important role in the instability behaviours, especially in the conditions with
a small electrical conductivity gradient. As the conductivity gradient increases slightly
to 4.1, a small loop of neutral curve of the stationary mode begins to appear in the
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Figure 2. Neutral curves for stress-free boundary conditions with Sce = 1000: (a) �σ/σ0 = 4;
(b) �σ/σ0 = 4.1; (c) �σ/σ0 = 4.5; and (d ) �σ/σ0 = 10. The dashed line is the oscillatory
mode, and the solid line is the stationary mode. Note that the upper dashed lines in the
left loops for the stationary mode in (c) and (d ) means the neutral state is determined by
the second leading eigenvalue. The dash-dotted lines indicate the corresponding oscillatory
frequency of the oscillatory mode referring to the right vertical scale.

low-wavenumber region, which means the instability of the stationary mode will be
initiated with an increase of the conductivity gradient as shown in figure 2(b). The
neutral curve of the oscillatory mode will dip lower gradually, while the loop of the
stationary mode will extend and descend more rapidly than the oscillatory mode
with increasing conductivity gradient as evidenced in figure 2(c). This result suggests
that the critical mode at the onset of instability will shift to the stationary mode
when the conductivity gradient exceeds a certain critical value, which is about 4.3 in
this case. Finally, as shown in figure 2(d ), the lower branch of the stationary mode
becomes dominant, and the local minimum on the branch of the oscillatory mode
disappears. Note that the neutral curves of the stationary mode in figures 2(c) and
2(d ) are separated into two branches: the lower branch and the upper branch. On the
lower branch indicated by the solid line, the neutral state is determined by the leading
eigenvalue of the spectra of growth rate s, while on the upper branch indicated by
dashed line, the neutral state is determined by the second leading eigenvalue. For the
branch of the oscillatory mode, it is the same as the lower branch of the stationary
mode, which is determined by the first leading eigenvalue. In order to interpret the
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Point α Q sr si

A 4 3 × 103 −0.00070204 0
−0.00871883 0

B 4 4 × 103 0.00045324 0
−0.00715735 0

C 4 104 0.00340950 0
−0.00251533 0

D 4 1.5 × 104 0.00329627 0
0.00080892 0

E 6 3 × 104 −0.00017092 0.01071536
−0.00017092 −0.01071536

F 6 4 × 104 0.00122196 0.01369494
0.00122196 −0.01369494

Table 1. The first two leading eigenvalues of selected points in figure 2(d ) with stress-free
boundary conditions.

variations of the leading eigenvalues of s, we choose six typical points A–F in figure
2(d ) and give the first two leading eigenvalues on each point in table 1. One can
see that for an assigned wavenumber α = 4, the real part sr of the first leading
eigenvalue will switch from negative at point A to positive at point B, which means
there exists a neutral point between A and B with sr = si = 0. Similar phenomena
can be observed for the second leading eigenvalues of points C and D, though the
first leading eigenvalue is still the mode with the highest positive growth rate. At the
points E and F with α = 6, it is found that the first two leading eigenvalues are a pair
of conjugate complex, and the real part sr will change sign from negative at point E
to positive at point F, which implies an oscillatory neutral state exists between them.

Similar results for the case with rigid boundary conditions are demonstrated
in figures 3(a)–3(d ) for four assigned conductivity gradients. Apparently, rigid
boundaries exert a stabilizing effect on this electrohydrodynamic flow, since the
neutral curves rise significantly compared to the case of stress-free boundaries under
the same conductivity gradient. The instability is still dominated by the oscillatory
mode at �σ/σ0 = 7 as shown in figure 3(a), and the branch of the stationary
mode appears gradually as the conductivity gradient increases, for example, as
illustrated in figure 3(b) at �σ/σ0 = 14. Obviously, rigid boundaries extend the
range of the conductivity gradient in which the oscillatory mode predominates over
the stationary mode. As the conductivity gradient increases further, the branch of
the stationary mode declines rapidly and then dominates the onset of instability
eventually as indicated in figures 3(c)–3(d ). The variations of the first two leading
growth rates are given in table 2 for the six typical points G–L in figure 3(d ). The
variational characteristics are the same as those in table 1 for the case of stress-free
boundaries.

Figures 4(a) and 4(b) illustrate the variations of the critical electric-field number Qc

and critical wavenumber αc with the conductivity gradient, respectively. Apparently,
rigid boundaries stabilize the fluid layer, since a higher electric field is required
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Figure 3. Neutral curves for rigid boundary conditions with Sce = 1000: (a) �σ/σ0 = 7; (b)
�σ/σ0 = 14; (c) �σ/σ0 = 18; (d ) �σ/σ0 = 50. The definition of each curve is the same as in
figure 2.

to trigger the onset of instability for an assigned conductivity gradient. As shown
in figure 4(a), the value of Qc decreases gradually with the conductivity gradient
for the oscillatory modes in both cases, indicating the conductivity gradient is a
destabilizing factor for the oscillatory mode, while after the shift of critical mode
to the stationary mode, a minimum appears on each curve, and then Qc increases
monotonically with �σ/σ0. To interpret such a variational relationship, it is necessary
to consider the basic physical mechanisms affecting the onset of electrohydrodynamic
instability. The instability of fluid motion in this system is mainly dominated by the
dielectrophoretic effect, the diffusion of ionic solutes and the fluid viscosity. When
a parcel of fluid within the fluid layer moves upward due to the action of electric
field, it enters a region with higher conductivity and lower electric field. And if a
parcel of low conductivity fluid is surrounded by higher conductivity fluid, it tends
to move towards region with low electric field. This motion is referred to as the
dielectrophoretic effect which is induced by the gradient of electric field. This effect
intends to drive an upward fluid motion continuously. On the other hand, the diffusion
of ionic solutes tends to impede the onset of electrohydrodynamic motion and thus
produces a stabilizing effect on the fluid layer. If the diffusive effect is large enough, the
upward fluid motion will be inhibited, since the diffusion of charge-carrying solutes
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Case α Q sr si

G 4 2 × 104 −0.00030961 0
−0.00155463 0

H 4 4 × 104 0.00019454 0
−0.00100744 0

I 4 2 × 105 0.00162590 0
−0.00010068 0

J 4 3 × 105 0.00207535 0
0.00024084 0

K 8 2 × 105 −0.00026663 0.00149279
−0.00026663 −0.00149279

L 8 3 × 105 0.00030270 0.00240450
0.00030270 −0.00240450

Table 2. The first two leading eigenvalues of selected points in figure 3(d ) with rigid
boundary conditions.
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Figure 4. The variations of (a) Qc and (b) αc with conductivity gradient �σ/σ0 at Sce = 1000.
The dashed and solid lines represent the critical mode determined by the oscillatory mode and
the stationary mode, respectively. The shift from the oscillatory mode to the stationary mode
occurs respectively at �σ/σ0 = 4.15 and �σ/σ0 = 14.9 for stress-free and rigid boundary
conditions.

tends to remove the conductivity difference between the upwardly flowing fluid parcel
and its surroundings, and thus the dielectrophoretic driving force is balanced by the
elimination of conductivity difference. The fluid viscosity will also resist the upward
fluid motion. However, as the conductivity gradient is small, the diffusive effect is
insignificant, and the dielectrophoretic effect will be enhanced with increasing �σ/σ0 ,
since the conductivity difference between the upward-moving fluid parcel and its
surroundings will increase. Consequently, the fluid layer tends to be destabilized by
an increase of �σ/σ0 in the region of small conductivity gradient. Particularly, once
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Figure 5. Convection cell patterns for four typical critical states with stress-free boundary
conditions at Sce = 1000: (a) �σ/σ0 = 1, αc = 3.96, Qc = 9.794 × 104, (sr , si) = (0, 0.113);
(b) �σ/σ0 = 4.1, αc = 2.10, Qc = 1.779 × 104, (sr , si) = (0, 1.075 × 10−2); (c) �σ/σ0 = 4.5,
αc = 1.31, Qc = 5.936×103, (sr , si) = (0, 0); and (d ) �σ/σ0 = 100, αc = 2.21, Qc = 1.776×103,
(sr , si) = (0, 0).

the onset of instability is primarily dominated by the dielectrophoretic effect, the
instability mode tends to be the oscillatory mode in the form of travelling wave rather
than the stationary mode. As the value of �σ/σ0 increases further, the diffusive
effect becomes pronounced gradually and makes the critical mode switch to the
stationary mode, though the dielectrophoretic effect still predominates and continues
to destabilize the fluid layer until the value of Qc reaches a minimum. After that,
the diffusive transport is comparatively strong enough to resist the upward fluid
motion, and thus a higher value of Qc is necessary to trigger the occurrence of
instability.

By the profiles of ĒdĒ
/
dz, which indicate the electric body force acting on the

volume charge, Baygents & Baldessari (1998) have pointed out that the portion of
fluid in which the dielectrophoretic forces are significant is close to lower-conductivity
boundary and becomes increasingly narrow as the conductivity gradient increases.
Therefore, they suggested that the lower boundary will produce a strong stabilizing
effect at high values of �σ/σ0. The results as shown in figure 4(b) reveal that
rigid boundaries generally seem to restrict the convective motion and shorten the
wavelength of the critical mode under the same conductivity gradient in comparison
to the case of stress-free boundaries. The discontinuities in both cases are due to the
shift of critical mode from the oscillatory to the stationary mode.

The onset of electrohydrodynamic instability is further characterized by examining
the flow patterns corresponding to the different instability modes. In the case of
stress-free boundaries, four typical flow patterns at the critical states with �σ/σ0 = 1,
4.1, 4.5 and 100 are shown in figures 5(a)–5(d ), respectively. The critical oscillatory
mode at �σ/σ0 = 1 as shown in figure 5(a) appears to be an inclined convection cell
propagating in the horizontal direction. Since the dielectrophoretic effect is significant,
and the diffusive effect could be ignored, the convection cell almost occupies the
whole thickness of the fluid layer, and the centre of convection cell is quite close
to the midline. The enhancement of dielectrophoretic effect makes the oscillatory
convection cell extend gradually, while the centre of convection cell descends slowly



204 M.-H. Chang, A.-C. Ruo and F. Chen

0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

(a) (b)

(c) (d)

Figure 6. Convection cell patterns for four typical critical states with rigid boundary
conditions at Sce = 1000: (a) �σ/σ0 = 1, αc = 5.15, Qc = 1.831 × 105, (sr , si) = (0, 0.124);
(b) �σ/σ0 = 14, αc = 2.92, Qc = 8.124 × 104, (sr , si) = (0, 0.004); (c) �σ/σ0 = 18, αc = 1.81,
Qc = 3.136 × 104, (sr , si) = (0, 0); and (d ) �σ/σ0 = 100, αc = 3.12, Qc = 4.424 × 104,
(sr , si) = (0, 0).

with increasing �σ/σ0 as shown in figure 5(b). When the stationary mode begins to
dominate the critical mode, the influence of diffusive transport grows gradually, and
the convection is mostly within the lower half of the fluid layer, especially in the region
adjacent to the lower boundary. As �σ/σ0 increases further and far away from the
state of minimum Qc, it requires higher electric field to raise the dielectrophoretic force
and overcome the pronounced stabilizing effect due to diffusive transport. Therefore,
as demonstrated in figure 5(d ), the wavelength will be shortened, and the centre of
convection cell will rise again. The convection still occupies the whole fluid layer, and
it is much stronger in the region near the lower-conductivity boundary. Figures 6(a)–
6(d ) illustrate the flow patterns for the case of rigid boundaries with �σ/σ0 = 1,
14, 18 and 100, respectively. The variation of flow patterns is similar to that in the
case with stress-free boundaries. However, it is obvious that rigid boundaries indeed
constrain the development of convection cells. As seen in these figures, the upper rigid
boundary appears to restrict the upward fluid motion driven by the dielectrophoretic
force. As a result, the convection cells move closer to the lower boundary and cause
weaker convection in the region near the upper boundary in contrast to the case with
stress-free boundaries.

3.2. Stability characteristics of longitudinal modes

The longitudinal mode means the axes of convection cells are parallel to the
superimposed weak shear flow. Before we proceed to discuss its instability behaviours,
it should be reminded that in this section and § 3.3 we consider the case with rigid
boundaries only as the eigenvalue problem defined by (35). Figure 7(a) illustrates the
neutral curves at Re = 1 for several typical values of �σ/σ0, and the corresponding
oscillatory frequencies of the oscillatory longitudinal modes are shown in figure 7(b).
It is found that the neutral curves are the same as those obtained from the case
without the superimposed shear flow. Actually, the neutral curves are independent of
the Reynolds number, indicating the presence of a weak shear flow will not affect the
stability of the longitudinal mode. Such an instability characteristic is the same as that
of the Rayleigh–Bénard–Poiseuille (RBP) flow system in which the longitudinal mode
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Figure 7. (a) The neutral curves and (b) the corresponding oscillatory frequency |si | of the
longitudinal mode at Re = 1 and Sce = 1000. The dashed and solid curves in (a) represent
the oscillatory and the stationary mode, respectively: (1) �σ/σ0 = 1; (2) �σ/σ0 = 10; (3)
�σ/σ0 = 50; and (4) �σ/σ0 = 100.

is also not affected by the horizontal Poiseuille flow (Clever & Busse 1992; Carriere
& Monkewitz 1999). Especially in the RBP system the longitudinal mode always
appears to be the most unstable mode with an invariable critical Rayleigh number.
The transverse mode has the same instability as the longitudinal mode only when
the Reynolds number of the shear flow approaches zero. As the strength of shear
flow will increase, the critical Rayleigh number of the transverse mode will increase
monotonically. Thus, the transverse mode never becomes dominant in the RBP system
with an infinitely extended fluid layer. However, in the present electrohydrodynamic–
Poiseuille flow system, the interaction between the instability mechanisms is more
complicated, and it is found that the transverse mode may dominate the onset of
instability when the fluid layer is subject to a weak shear flow. The details will be
demonstrated in the next section. Furthermore, the oscillatory longitudinal mode has
never been found in the RBP system, while in the present system the oscillatory
longitudinal modes are found to exist and may determine the critical mode at the
onset of instability. The results in figure 7(b) show that the oscillatory frequency of
the longitudinal mode will decrease gradually with increasing conductivity gradient.
Once the critical mode shifts from the oscillatory mode to the stationary mode, the
corresponding oscillatory frequency drops to zero.

The influence of the electric Schmidt number on the longitudinal mode is also worth
noting. The results are shown in figure 8 for four typical values of Sce. Obviously,
the minimum on the neutral curve is independent of the value of Sce if Sce is greater
than 103. That is according to the definition of Sce in (17d ), if the fluid viscosity is
much greater than the effective diffusivity of ions, the variation of Sce will play no
role in the factors affecting the critical value Qc of the longitudinal mode, while if
Sce reduces to the order of 102, which implies relatively smaller strength of viscosity,
the longitudinal mode will be slightly more unstable due to the reduction of the
resistance of viscosity. Since the onset of instability is an oscillatory longitudinal mode
at �σ/σ0 = 10, the corresponding oscillatory frequency for each case in figure 8(a)
is shown in figure 8(b). One can see that the value of |si | is quite sensitive to the
variation of Sce. Although the neutral curve seems to be invariable as Sce > 103, the
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Figure 9. (a) The neutral curves and (b) the corresponding oscillatory frequency (−si) of the
transverse mode at Sce = 1000 and �σ/σ0 = 10: (1) Re = 0.01; (2) Re = 0.05; (3) Re = 0.2;
(4) Re = 1; and (5) Re = 10. The results of the longitudinal mode (LG) are given here by the
dashed lines for comparison.

oscillatory frequency is found to be inversely proportional to Sce, and the curve in
figure 7(b) appears to move parallel to the lower position with one order of reduction
in |si | if the value of Sce has one order of increase.

3.3. Stability characteristics of transverse modes

In contrast to the longitudinal mode, the convection cells of the transverse mode
are aligned along the weak shear flow and with their axes normal to the shear flow
direction. The superimposed weak shear flow is represented by the Reynolds number,
and its effects on the neutral curves of the transverse mode are demonstrated in
figure 9 for several typical values of Re with Sce = 103 and �σ/σ0 = 10. As shown
in figure 9(a), it is found that the neutral curve of the transverse mode tends to be
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the same as the longitudinal mode as the Reynolds number approaches zero, while
as the Reynolds number increases, the neutral curve of the transverse mode will dip
lower gradually till about Re = 0.2 and then rise rapidly. Finally, the longitudinal
mode becomes the critical mode again when Re exceeds a certain critical value. The
corresponding oscillatory frequency of each curve is shown in figure 9(b). The vertical
axis is expressed in terms of (−si), since si is negative for the transverse modes,
which indicates the travelling wave will propagate in the direction of shear flow with
a dimensionless velocity defined by (−si/αx). Obviously, the magnitude of (−si) for
the transverse mode decreases quickly with Re and then appears to be invariable, as
Re is greater than 1. In contrast to the results of transverse modes, the longitudinal
modes have the same variational behaviour of (−si) in each case of Re, and its value
is inversely proportional to Re for any assigned wavenumber αx . This result does not
mean that the variation of Re will affect the instability behaviour of the longitudinal
mode. Actually, since the scale to non-dimensionalize the oscillatory frequency is
v0/d , it is evident that the dimensionless oscillatory frequency (−si) will be inversely
proportional to the Reynolds number due to the constant dimensional oscillatory
frequency.

As we have discussed in the previous section, such an instability characteristic is
quite different from that of the famous RBP system. The present results show that
the transverse mode may prevail over the longitudinal mode when the system is under
the action of a horizontally weak shear flow. The main reason may be interpreted
from the interaction between the instability mechanisms in this electrohydrodynamic–
Poiseuille flow system. When the Reynolds number increases from zero, the imposed
weak shear flow will enhance the upward electrohydrodynamic motion more than
the diffusive effect and thus destabilize the fluid layer in the form of travelling
wave along the shear flow direction. Simultaneously, the effect of diffusive transport
also grows gradually with increasing Re. Once this effect is sufficiently strong, the
neutral curve of the transverse mode cease to descend and start to rise with further
increase in Re. As a result, the longitudinal mode eventually dominates the onset
of instability, since the neutral curve of the transverse mode rises above that of the
longitudinal mode if the Reynolds number is large sufficiently. The cell patterns of
the four selected cases at critical state with Re = 0.05, 0.2, 1 and 10 are shown in
figures 10(a)–10(d ), respectively. As seen in figure 10(a), the transverse mode appears
to be an inclined travelling wave in the horizontal direction. When Re increases to 0.2
as shown in figure 10(b), the inclined angle of the convection cell decreases, and the
convection strength in the upper half-channel reduces significantly, especially in the
region near the top plate, which is caused by the conspicuous enhancement of diffusive
effect due to the imposed weak shear flow. This phenomenon continues with increasing
Re as shown in figure 10(c) for Re = 1, and the wavelength also increases gradually.
As Re increases further, the convection cells are gradually distorted, especially in the
centre due to the action of the imposed shear flow as shown in figure 10(d ). However,
such a transverse travelling wave will not become critical, since the critical value of
Qc is higher than that of the longitudinal mode under this condition with Re = 10.

The effect of conductivity gradient on the neutral curve of the transverse mode is
illustrated in figure 11(a), and the corresponding oscillatory frequency is given in figure
11(b). It is found that the instability behaviour is similar to that of the longitudinal
mode, in which the minimum of Q on the neutral curve will first decrease with �σ/σ0,
reach a minimum and then increase rapidly. In comparison with the results shown in
figure 7, the effect of the conductivity gradient on the transverse mode is obviously
more significant than that on the longitudinal mode when the value of �σ/σ0 is small,
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Figure 10. Convection cell patterns of the transverse mode for four typical critical state with
Sce = 1000 and �σ/σ0 = 10: (a) Re = 0.05, αx = 3.50, Qc = 3.359×104, (sr , si) = (0, −4.937);
(b) Re = 0.2, αx = 3.20, Qc = 1.574 × 104, (sr , si) = (0, −3.068); (c) Re = 1, αx = 2.95,
Qc = 4.295 × 104, (sr , si) = (0, −2.850); (d ) Re = 10, αx = 2.64, Qc = 3.123 × 105,
(sr , si) = (0, −2.593).
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Figure 11. (a) The neutral curves and (b) the corresponding oscillatory frequency (−si) of the
transverse mode at Sce = 1000 and Re = 1: (1) �σ/σ0 = 1; (2) �σ/σ0 = 3; (3) �σ/σ0 = 5;
(4) �σ/σ0 = 10; (5) �σ/σ0 = 20; (6) �σ/σ0 = 50; and (7) �σ/σ0 = 100.

since the neutral curve of the transverse mode dips lower than that of the longitudinal
mode under the same value of �σ/σ0. But the neutral curve of the transverse mode
soon begins to rise after the case of �σ/σ0 = 3. At �σ/σ0 = 20, the minimum on
the neutral curve is greater than that of the longitudinal mode, which means the
instability will be dominated by the longitudinal mode again once the conductivity
gradient is large enough. Note that the neutral curve gradually appears to have a
bimodal phenomenon as shown in the case of �σ/σ0 = 50. That is two local minima
can be observed on the neutral curve. However, this phenomenon is insignificant, since
it always occurs when the neutral curve is much higher than that of the longitudinal
mode. Figures 12(a)–12(d ) show the convection cell patterns for four typical cases
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Figure 12. Convection cell patterns of the transverse mode for four typical critical states with
Sce = 1000 and Re = 1: (a) �σ/σ0 = 1, αx = 4.13, Qc = 4.512 × 104, (sr , si) = (0, −4.215);
(b) �σ/σ0 = 3, αx = 3.58, Qc = 2.597 × 104, (sr , si) = (0, −3.518); (c) �σ/σ0 = 5, αx = 3.31,
Qc = 2.806 × 104, (sr , si) = (0, −3.227); (d ) �σ/σ0 = 10, αx = 2.95, Qc = 4.295 × 104,
(sr , si) = (0, −2.850).

with �σ/σ0 = 1, 3, 5 and 10, respectively. At �σ/σ0 = 1 as shown in figure 12(a),
the weak shear flow tends to distort the transverse convection cells, especially in
the region within the upper half-channel, and the cell pattern almost occupies the
whole thickness of the fluid layer. As �σ/σ0 increases to 3, the interaction between
the dielectrophoretic, diffusive and shear effects seems to constrain the convection
cells within the lower half-channel, while the weak convective motion in the upper
half-channel still appears to be distorted as shown in figure 12(b). If �σ/σ0 increases
further as shown in figures 12(c) and 12(d ), the gradually distinct enhancement of
diffusive effect stabilizes the fluid layer with respect to the transverse mode, and the
distortion of cell patterns also reduces gradually.

Figure 13(a) reveals the effect of the electric Schmidt number on the instability
of the transverse mode, and the corresponding oscillatory frequency of the neutral
curves is shown in figure 13(b). Unlike the results in the case of the longitudinal mode
that the flow instability is almost independent of the variation of Sce, here we find
that the transverse mode depends heavily on the electric Schmidt number, and in
the present case with Re = 1 and �σ/σ0 = 10, the fluid layer seems to be stabilized
monotonically with increasing Sce. Since the neutral curve rises rapidly with Sce,
it is expected that the transverse mode will be replaced by the longitudinal mode
as the critical mode, as the electric Schmidt number is high enough. Four typical
patterns of convection cells at the critical states are illustrated in figures 14(a)–14(d )
for Sce = 102, 103, 104 and 105, respectively. As seen in these figures, the inclined angle
of the convection cell will gradually decrease with higher Sce. But when Sce is greater
than 103, the variation of the cell patterns appears to be limited. The convection is
mainly within the lower half-channel and is relatively weak in the region close to the
upper plate.

The variations of Qc and |si |c with Re are respectively demonstrated in figures
15(a) and 15(b) for the transverse mode with three typical values of Sce. Curve 1
corresponds to the case we considered in figure 9. For comparison, the corresponding
results of longitudinal modes are given in these figures in the form of dashed lines.
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Figure 14. Convection cell patterns of the transverse mode for four typical critical states with
Re = 1 and �σ/σ0 = 10: (a) Sce = 102, αx = 3.55, Qc = 1.605 × 104, (sr , si) = (0, −3.562);
(b) Sce = 103, αx = 2.95, Qc = 4.295 × 104, (sr , si) = (0, −2.850); (c) Sce = 104, αx = 3.04,
Qc = 2.231 × 105, (sr , si) = (0, −3.003); (d ) Sce = 105, αx = 3.16, Qc = 1.217 × 106,
(sr , si) = (0, −3.147).

One can see that as the Reynolds number approaches zero, the transverse mode tends
to have the same instability as the longitudinal mode in any case, since the fluid
layer gradually becomes quiescent. As Re increases, the variational process of Qc

is the same in each case: decreases with Re, passes a minimum and then increases
eventually over Qc of the longitudinal mode. It is obvious that for a higher value
of Sce, Qc will decrease and pass the minimum earlier, making the transverse mode
prevail in a smaller range of Re. The results in figure 15(b) show that the oscillatory
frequency of the transverse mode increases quickly as Re approaches zero, which
indicates the speed of transverse travelling wave will increase dramatically as the
onset of the transverse mode will occur in weak shear flow regime. The curves 4–6
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Figure 15. The variations of (a) Qc and (b) |si |c with Re for the transverse mode at

�σ/σ0 = 10 with three typical values of Sce: (1) Sce = 103; (2) Sce = 104; and (3) Sce = 105. The
corresponding results of the longitudinal mode are given here as dashed lines for comparison:
(4) Sce =103; (5) Sce = 104; and (6) Sce = 105.

for the longitudinal mode appear to be straight lines, showing the magnitude of the
critical oscillatory frequency is inversely proportional to the Reynolds number in each
case of Sce.

Similarly, the variations of Qc and |si |c with Sce can be determined for the assigned
values of Re. It is found that the corresponding variational processes are similar to
the results shown in figures 15(a) and 15(b), which indicates that the electric Schmidt
number exerts a similar effect as the Reynolds number on this electrohydrodynamic
flow system. Accordingly, we further examine the variations of Qc and |si |c with
respect to the product of Sce and Re as displayed in figures 16(a) and 16(b). Evidently,
the instability characteristics can be expressed in a simple form, and the effects of
Re and Sce both can be inferred from this figure. For the longitudinal modes, the
critical value of Qc is independent of SceRe and |si |c is inversely proportional to this
parameter. Note that SceRe is equal to v0d/Keff which denotes physically the ratio
of convective transport effect to diffusive transport effect. Therefore, the instability
behaviours of transverse modes can be described simply by the ratio of these two
dominant mechanisms. As shown in figure 16(a), the three assigned typical cases for
the transverse mode are almost overlapped in the region under the horizontal dashed
line of the longitudinal mode. The corresponding variations of |si |c with SceRe for
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Figure 16. The variations of (a) Qc and (b) |si |c with SceRe at �σ/σ0 = 10 for both transverse
and longitudinal modes with three typical values of Sce . The solid lines are the results of the
transverse mode: (1) Sce = 103; (2) Sce = 104; (3) Sce = 105. The dashed lines are for the
longitudinal mode: (4) Sce = 103; (5) Sce = 104; (6) Sce = 105.

these cases are also the same as shown in figure 16(b), and the value of |si |c tends to
be a constant with increasing SceRe. Similar results can be observed for any assigned
conductivity gradient across the fluid layer.

The variations of Qc and |si |c with �σ/σ0 are respectively shown in figures 17(a)
and 17(b) for several typical cases of Re. Curve 2 in these figures corresponds to the
case we considered in figure 11. The dashed and solid lines of the longitudinal mode
represent the oscillatory and the stationary mode, respectively. The results show that
if the strength of imposed shear flow is sufficiently large, for example in the case
with Re = 15, the curve of the transverse mode lies totally above the curve of the
longitudinal mode, meaning the transverse mode never becomes critical. On the other
hand, if the strength of shear flow is low enough, the transverse mode is possible to
give a lower value of Qc than the longitudinal mode when the conductivity gradient is
small enough. The range of �σ/σ0 in which the transverse mode is dominant extends
gradually with decreasing Re. In the region with high value of �σ/σ0, however,
the interaction between the conductivity gradient and the shear flow exerts a strong
stabilizing effect on the transverse mode and thus causes the stationary longitudinal
mode to always prevail under such a condition. Figure 17(b) illustrates that the value
of |si |c of transverse modes generally decreases slightly with �σ/σ0 in the region in
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Figure 17. The variations of (a) Qc and (b) |si |c with conductivity gradient �σ/σ0 for the
transverse mode at Sce = 1000 with four typical values of Re: (1) Re = 0.1; (2) Re = 1; (3)
Re = 10; and (4) Re = 15. The shift of critical mode between the transverse and longitudinal
modes occurs at points p, q and r , which correspond to �σ/σ0 = 3.3, 15 and 23, respectively.
The corresponding results of the longitudinal mode (LG) are given here for comparison.

which the transverse mode is determinant, whereas the longitudinal mode in each case
has an abrupt jump of |si |c occurring at �σ/σ0 = 14.9 from a finite value to zero,
which is caused by the shift of critical mode from the oscillatory to the stationary
mode.

4. Conclusions
In this study we have performed a complete linear stability analysis for the

electrohydrodynamic flow in a liquid layer between two parallel plates with spatial
electrical conductivity gradient. An external electric field is applied over the depth of
the fluid layer, and a weak pressure-driven shear flow is subject to the layer in the
horizontal direction. In the absence of shear flow, an oscillatory mode is discovered
to be dominant in the range of small conductivity gradient. This finding modifies
the previous theoretical results based on the assumption of exchange of stabilities
and provides a thorough understanding of the linear instability behaviour in this
electrohydrodynamic flow system. In the presence of shear flow, both the longitudinal
and transverse modes are considered, and the instability of the longitudinal mode is
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found to be invariable with respect to the superimposed weak shear flow. However, in
contrast to the longitudinal mode, the instability behaviours of the transverse mode
are found to profoundly depend on the imposed shear flow. In general, under the
conditions with small Reynolds number and low conductivity gradient, the transverse
mode exhibits higher instability and becomes the critical mode dominating the onset
of instability, while if the Reynolds number or conductivity gradient is large enough,
the critical mode shifts to the longitudinal mode. The present results suggest that
an imposed weak shear flow may enhance the system instability. Such an instability
characteristic is important in the application of mixing or separation of liquid streams,
especially in microfluidic devices. Further studies for the instability of electrokinetic
flow coupled with the shear flow effect will benefit the design and utilization of
microfluidic mixer and separator.
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